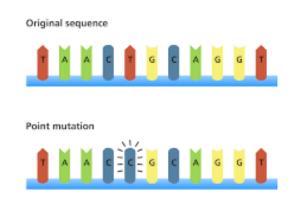

Unit 2 Intro to Biodiversity

Dive	ersity measured in different levels		
1. E	Ecosystem Diversity-the number of differ	ent habitats available in a giv	en area
	biodiversity =	ecosyste	em/population health
Lool	k for variation within a species as well as th	he number of species present	in that area.
An a	area with a many individuals representing	a bunch of different	·
2. S	Species diversity: the	of different species in	an ecosystem and the
b	balance or evenness of the population sizes	s of all species in the ecosyste	m.
Popi	ulations with high diversity are better able	e to respond to environmenta	l stressors.
3. (Genetic diversity: how different the	are of individual	s within a population
((group of the same species)		
	hness (r) is just the	Community 1	Community 2
	number of different		
High	h (r) is generally a good sign of		
ecos	system (more	25% : 25% : 25% : 25% : 25%	* : 6%
spec	cies means more quality resources like	Community 1 and Community 2 have the same species r	icnness, but they have amerent species evenness
H ₂ O	& soil)		
	nness is a measure of how all of the individual ween the different species	dual organisms in an ecosyste	em are
	nness indicates if there are one or two well balanced	sṛ	pecies, or if population sizes

Genetic Diversity is Beneficial

Genetic diversity = measure of how different the
______ (set of genes) are of the
individuals within a population of a given species

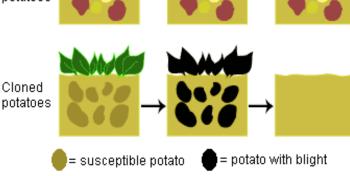
Lack of Genetic Diversity


What is a result of lack of genetic diversity in a crop such as corn or soybeans?

Increased susceptibility to _____

Mutations

There is genetic diversity in all populations
because _____ mutations in copying
of DNA & recombination of chromosomes in sex
cells of parents leads to new gene combinations
& new _____ in offspring

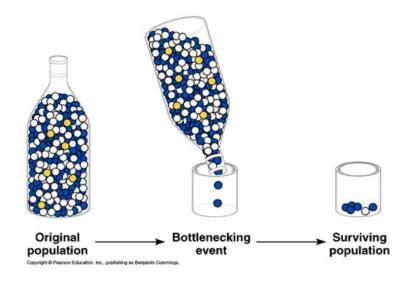


Genetic Diversity is Beneficial

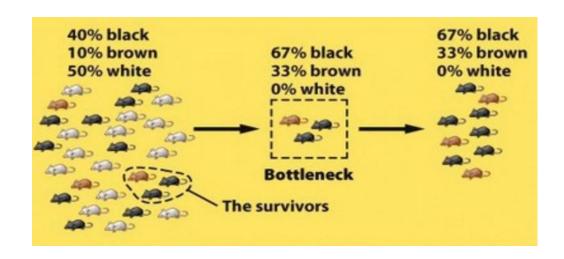
Original crop

The more genetic diversity in a population the

______ they are likely to recover after a ______ in the ecosystem.

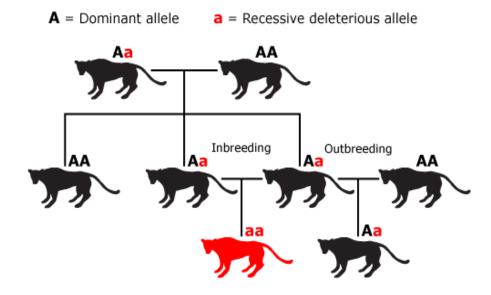

Blight hits

After disease


Bottleneck Effect

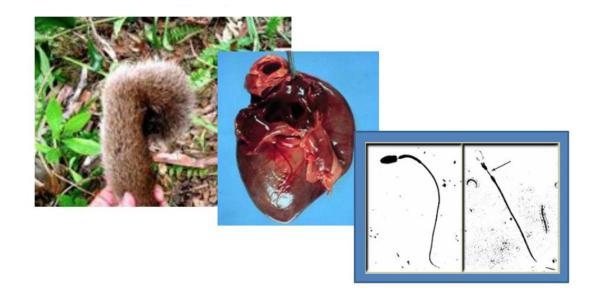
An environmental disturbance (natural disaster/human habitat destruction/over predation) that drastically reduces pop. size & kills organisms regardless of their genome

Surviving population is ______ and because individuals died randomly, it doesn't represent the genetic diversity of the original population


Because the population is smaller & less genetically diverse, it's even more vulnerable to future environmental disturbances

Inbreeding Depression

Inbreeding is when organisms mate with closely related "______" members


Leads to higher chance of offspring having harmful genetic mutations because they're getting similar genotypes from both parents

Smaller populations are more likely to experience inbreeding (difficult to find non-related mate)

Ex: Florida panther population decreased down to 30 in 1900s due to hunting & habitat loss. Inbreeding depression = kinked tails, heart defects, low sperm count, undescended testicles (saved in 95' by pumas from Texas)

Ecosystem Resilience

Resilience = the ability of an ecosystem to return to its _____ conditions after a major disturbance (windstorm, fire, flood, clear-cutting, etc.)

Higher species diversity = higher ecosystem resilience

High species diversity means more plant species to ______ disturbed ground, anchor soil, and provide food & habitat for animal species

Practice FRQ 2.1

Describe one of the three levels of biodiversity.

Explain how high biodiversity at the level you described is beneficial to ecosystems.

Ecosystem Services

Goods that come from	resources or services/functions that
ecosystems carry out that have measural	ole economic/financial value to
Provisioning-Goods taken	from ecosystems or made from natural resources
(wood, paper, food)	
Regulating-Natural ecosystems regulate clin	nate/air quality, reducing storm damage & healthcare costs
Supporting-Natural ecosystems support pro-	cesses we do, making them cheaper &
easier (bees pollinate crops	and bats eating mosquitos)
Cultural generate by recre	ation (parks, camping, tours) or scientific knowledge
Hum	an Disruption
Human activities disrupt the ability of eco	osystems to function, which
This has ecological (and economic () consequences
Clearing land for	/ removes trees that store
$\underline{\hspace{1cm}}$ (more CO_2 in atmosphe	re alters climate = more storm damage & crop failure)
 More increases CO₂ =global te 	mperature rise because of the
 Overfishing leads to fish popul 	lation (lost fishing jobs and
lower fish sales in the future)	
Provis	sioning Services
Goods/products directly provided to human	s for/use by ecosystems
Ex: Fish, animals, lu foods like berries, seeds, wild grains, honey	mber (wood for furniture/buildings) naturally grown

Goods/products that are	from natural	from natural resources that ecosystems provide			
Ex: paper, medicine, rubber					
Disrupted by overharvesting, water pollution, clearing land for agriculture/urbanization					
	Regulating Services				
Benefit provided by ecosystem pr	ocesses that	natural conditions like			
climate and air quality					
Trees in a forest	(store	e) CO ₂ through photosynthesis which			
reduces rate of clim	reduces rate of climate change & lessens damage caused by rising sea level &				
reduces crop failure	reduces crop failure from drought				
Treesair by absorbing air pollutants which reduces					
health care costs fo	r treating diseases like asth	nma and bronchitis			
Disrupted by					
	Supporting Services	;			
Natural ecosystems support proc	esses we do ourselves, mak	king them less costly and easier for us			
Wetland plant roots	s filter pollutants, leading to	o groundwater			
that we don't have	to pay as much to purify wit	ith expensive water treatment plants			
Bees & other insect	so	our agriculture crops, leading to more			
crop production & l	nigher profits				
Disrupted by pollinator habita	t & fillir	ng infor development			

Cultural Services

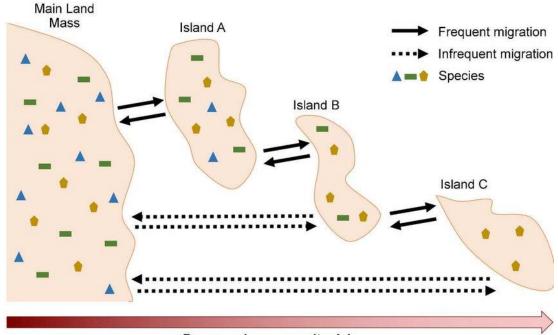
from recreational courism-related spending) & profits from scientific (health/agriculture/educational knowledge)	activities (hunting/fishing licenses, park fees, discoveries made in ecosystems
	to enter nealize around money at
•	no to enter parks, spend money at
local stores/restaurants, or camping f	ees
Fishermen pay for fishing	to catch fish in clean rivers
Scientists learn about plant compound	ds that can lead to creation of
medicines which are	for profit
Disrupted by,,	and
Practice FRQ 2.2	
Describe an ecosystem service that intact forest e	cosystems provide for humans.
Specialist	Generalist
Lives in a niche	Lives in a niche
Only eats plants/animals	Eatstypes of plants/animals
adaptable to environmental change	Veryto environmental change
Susceptible to an species	as susceptible to an invasive species
Susceptible to	Examples: and
Examples:and	

Island Biogeography

Study of ecological relationships & community structure on islands

- Islands can be ______islands in a body of water or figurative habitat islands such as central park in New York City or _____ (natural habitats surrounded by human developed land)

2 Basic Rules


- 1. Islands ______ to the "mainland" support more species
 - Easier for colonizing organisms to get to island from mainland (5km is easier than 15km)
 - More colonizing organisms = more genetic in new population

Closer to the island = more species _____

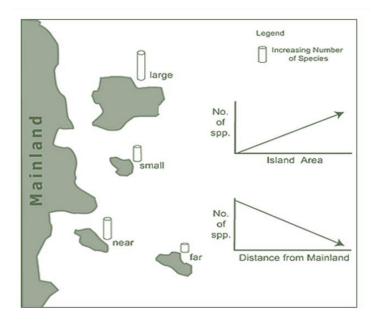
- Easier for more species to ______ to island from mainland (swim/fly)
- More continual migration of individuals to the island habitat
 - Frequent migration brings more genetic diversity &______ population size
- Inverse relationship between island distance from mainland & species richness
 - The _____ away from mainland, the ____ species

Smaller islands that are close to the mainland have a different problem

If a small population gets established, they have to worry about possible
 ______ species, because it is easy for those species to get there,
 and the low numbers of the new population may not be able to ______
 the new invasive species.

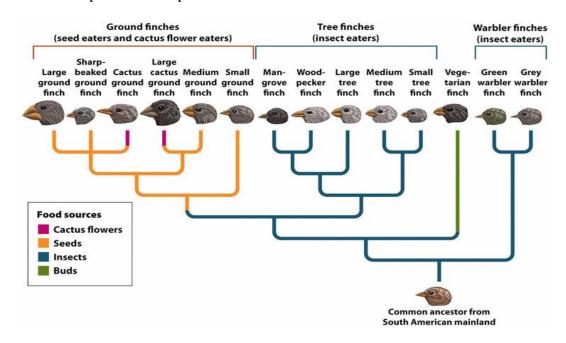
Decrease in community richness

2	T	T 1 1		
/	Larger	ıcıanac	support more tota	I SNACIAS
<i>~</i> .	Lui Sci	isiaiias	support more tota	Decres


disturbance)

• The	the island, the g	reater the ecosystem diversity					
Greater ecosystem div	Greater ecosystem diversity = more food & habitat resources						
More niches, or "roles"	 More niches, or "roles" organisms can play in the ecosystem 						
Smaller islands are more prone	Smaller islands are more prone to						
• The the island= resources available							
 More vulnerable to 		events					
• Less	, or "roles" organisms	can play in the ecosystem					
Larger islands support more							
o higher ecosystem							
o More available	"niches" or roles						
■ Ex: all th	e different food sources ava	ailable to birds on Galapagos					

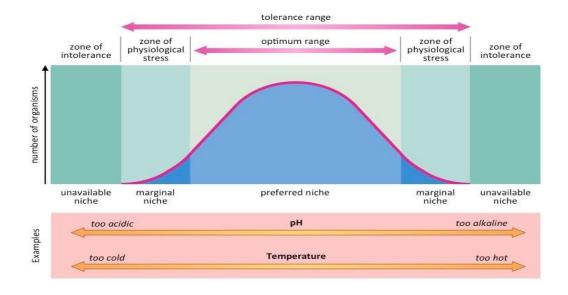
o ______ extinction rate (species less likely to die off)


• Larger population sizes (more genetically diverse and more resistant to env.

• Positive correlation between island size & species richness

Evolution on Islands

- Islands have limited space & resources, creating unique conditions for evolution
 - More pressure for species to adapt to narrower niches (more specific food/habitat)
- Adaptive radiation = single species rapidly evolving into several _____ species to use diff. resources & reduce competition
 - Ex: Galapagos Finches
- Different _____ quickly evolve to fit variety of different food sources on island
- Single colonizing species from mainland quickly ______ to many slightly different species to adapt to new island conditions.



Practice FRQ 2.3

Describe the processes of colonizing an island habitat. Describe how the island's distance from
the mainland influences the number of species that will colonize the island habitat.

Ecological Range of Tolerance	
Range of conditions such as,, or	•
that an organism can endure before injury or res	ults.
Species and individual organisms both have a range of tolerance for all the different	
environmental conditions of their habitat	
Salmon	
Salmon have a basic range of tolerance for temperature fromo too C. But some	
individual salmon have adaptations that give them a range of tolerance that is outside the ba	asic
range for the species.	
Due to genetic	
Makes populations of salmon more to disturbances, like global	
Tolerance Zones	
Optimal range: range where organisms,, and, and	
Zone of physiological stress: range where organisms survive, but experience some such as infertility, lack of growth, decreased activity, etc.	

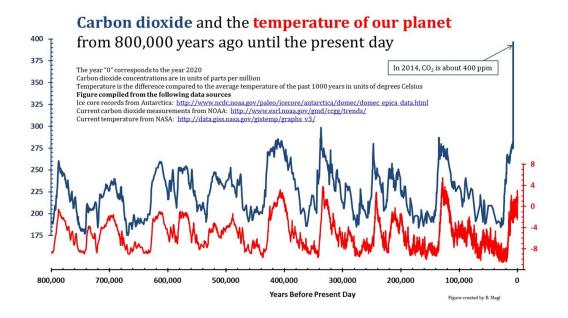
Zone of intolerance: range where the organism will _____

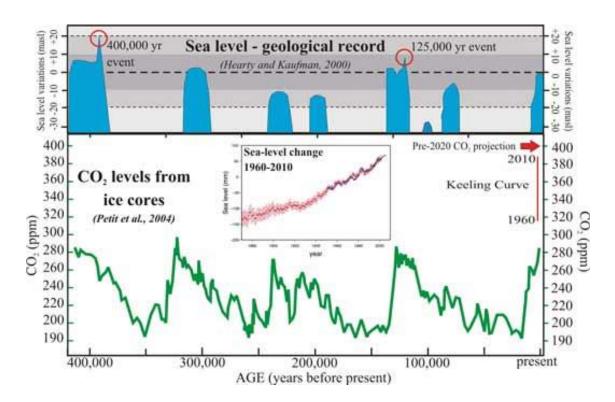
Natural Disturbances to the Ecosystem

A _____event that disrupts the structure and or function of an ecosystem

Examples include:

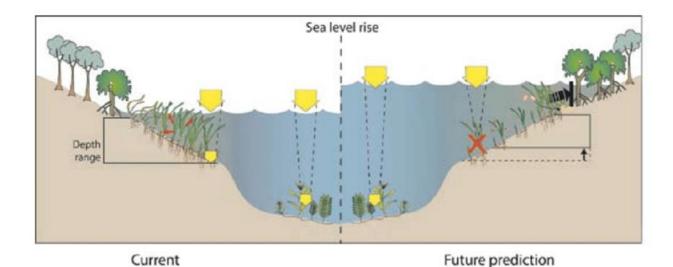
Events can be even greater than human disturbances


Periodic: occurs with ______ frequency (ex: dry-wet seasons)


Episodic: occasional events with ______ frequency (ex: hurricanes, droughts, fires)

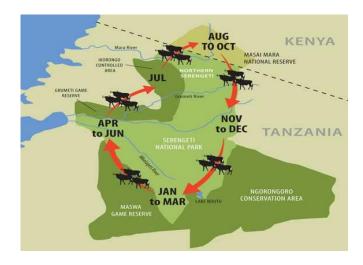
Random: _____ regular frequency (volcanoes, earthquakes, and asteroids)

Earth's climate has varied over geologic time for numerous reasons


Slight changes in earth's _____ & ____ cause mini ice ages & warmer periods as earth shifts slightly closer to & further from sun

Environmental Change=Habitat Destruction

Major environmental disturbances result in ______ habitat changes and or loss Examples include:



Migration

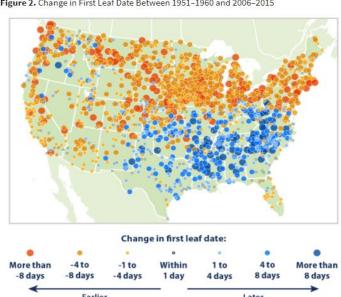
Wildlife may migrate to a _____ habitat as the result of natural disruptions

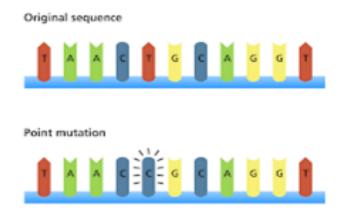
Ex: wildebeests migrating to follow ______ patterns of _____ savanna

- Ocean species moving further north as water temperature warms
- Bird migration & breeding shifting earlier as insect hatching shifts earlier with warming climate

Practice FRQ 2.5

Describe the relationship between latitude and change in first leaf date depicted in the graph. **Explain** why you think this relationship exists.

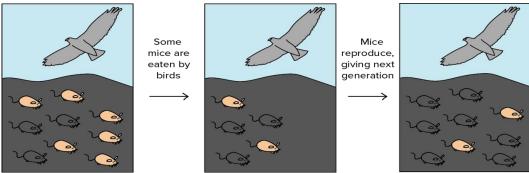



Figure 2. Change in First Leaf Date Between 1951-1960 and 2006-2015

Fitness and Adaptations

All populations have some genetic diversity, or variability in genomes of_____;

Genetic diversity exists because:


- mutations while DNA is being copied create new traits
- Crossing over in parent chromosomes creates _____ combinations of genes (and therefore traits)
- **Adaptation:** a new trait that increases an organism's **fitness** (ability to <u>survive</u> and <u>reproduce</u>)

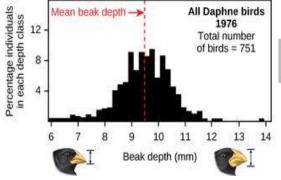
Adaptations and Natural Selection

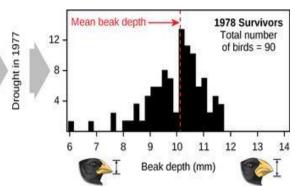
Natural selection: organisms that are better adapted to their environment survive and reproduce more _____

- ❖ Individuals with adaptations pass them on to ______ & individuals without adaptations die off, which leads to the entire population having the adaptation over time (evolution)
- ❖ Selective pressure/force: the environmental condition that ______individuals without the adaptation

The hawk (predator) is the selective pressure

Environmental Change and Evolution


The environment an organism lives in determines which traits are ______


❖ As environments change, different traits may become adaptations & old traits may become

Ex: a drought can kill off finches with smaller beaks, making larger beaks for cracking harder

seeds an adaptation

The Pace of Evolution

The more rapidly an env. changes, the less likely a species in the env. will be to adapt to those changes

- If the pace of evolutionary change is too rapid, many species may migrate out of the env. or dieoff completely
- ❖ Ex: if the ocean warms too quickly, many species of fish may not be able to migrate before they run out of oxygen and suffocate

The more genetic diversity in a population, the better they're able to adapt to environmental change (higher chance that some individuals have good mutations)

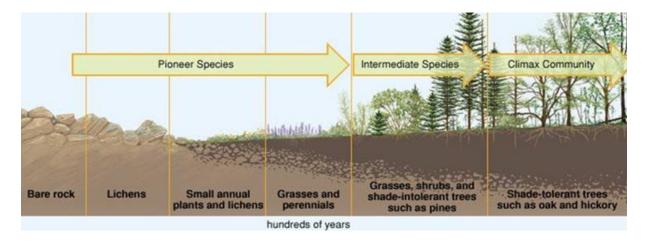
The longer the lifespan of the organism, the slower the rate of evolution

- Ex: bacteria & viruses can adapt and evolve in days
- ❖ Insects can evolve in years
- ❖ Humans evolution = thousands to millions of years

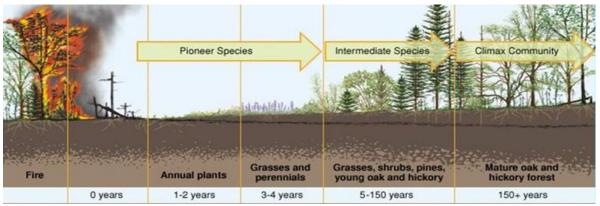
Practice FRQ 2.6

This data table shows the beak size of 20 finches from two different islands in the Galapagos.

Describe the difference in beak size between the two islands. **Make** a claim about the reason for this difference in beak size.

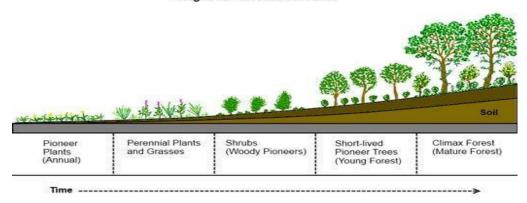

Daphne Island Beak Size (mm)	Santa Cruz Island Beak Size (mm)
9.55	10.05
8.70	9.74
9.62	10.27
9.22	9.81
8.79	10.46
9.61	10.24
9.02	10.02
7.85	10.30
9.01	10.43
8.26	10.52

Ecological Succession

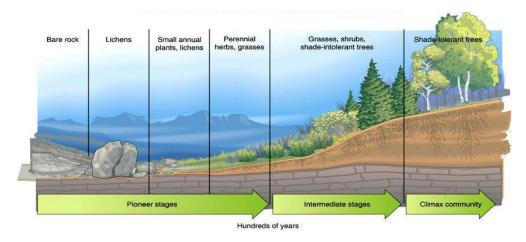

series of stages of growth that a forest goes through		
Primary Succession: starts from	in an area with no previous soil formation	
Moss & lichen spores carried by the wind gro	ow directly on rocks, breaking them down to form soil	
Primary succession Occurs in an area that	hasn't previously been colonized by plants (bare rock)	
Examples include:		

Moss and lichen (spores dispersed by wind) are able to grow directly on rock by secreting acids that break down rock & release minerals containing nutrients they need (N/P/K)

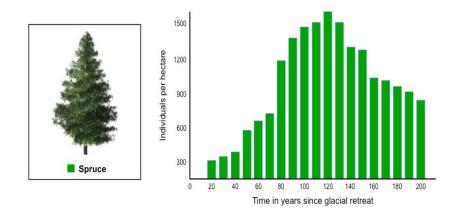
Chemical weathering of rocks by moss & lichen combined with organic matter from moss & lichen dying form initial shallow soil


Secondary Succession: starts from	established soil, in an area where a
disturbance (fire/tornado/human land clearing) cleared ou	at the majority of plant life
Grasses, sedges, wildflowers, and berry bushes have seeds	dispersed by wind or animal droppings
Pioneer species are still wind-dispersed seeds of plants tha	t are fast-growing and sun tolerant, but
grasses//weeds instead of	/
Soil is already established & sometimes even enriched by n	utrient-rich from fire; overall
moreprocess than primary succession	on

Stages of Succession


Stages are characterized by which types of	species	the
ecosystem; different species are adapted to th	e conditions of the dif	ferent stages
Pioneer or early succession species appear in	irst, when the ground	is simplyrock
or bare after a disturbance		
Characteristics: seeds spread by	or	, fast growing, tolerant
of soil and full	sunlight	
Ex: moss, lichen (bare rock) wildflow	ers, raspberries, grass	es/sedges
Mid-successional species appear	pioneer s	pecies have helped develop
soil with more nutries	nts by their cycles of g	rowth/death
Characteristics: relatively grow	ving,	plants that need
soils with more nutries	nts than pioneers, sun	tolerant
Ex: shrubs, bushes, fast-growing trees	like aspen, cherry, and	l pine

Stages of Forest Succession


Late successional or climax community species appear, after soil is			
	and	with	nutrients by cycles of growth and
death by early & mid successional species			
Characteristics: large,	growing	trees that are t	olerant of shade and require deep
soils for	root networks		

Ex: maples, oaks, other large trees

Practice FRQ 2.7

Based on the graph below, **explain** whether spruce trees are an early, middle, or late successional species.

